Study of screening in QED_2 with new observables

Zbigniew Ambroziński

3 July 2012

- $oldsymbol{1}$ QED $_2$ in lightfront formulation
- String tension
- 3 String breaking screening
- Summary

$$\mathcal{L} = \bar{\psi} \left(i \partial \hspace{-0.1cm}/ - g \hspace{-0.1cm}/ \hspace{-0.1cm}/ - m \right) \psi - \frac{1}{4} F^{\mu \nu} F_{\mu \nu}$$

[Eller, Pauli, Brodsky '87]: In quantized model there are fermions b_n^{\dagger} and antifermions d_n^{\dagger} .

$$Q=\sum_n (b_n^\dagger b_n-d_n^\dagger d_n)$$
 charge operator $P^+=rac{2\pi}{L}\sum_n n(b_n^\dagger b_n+d_n^\dagger d_n)\equivrac{2\pi}{L}K$ momentum operator $M^2=m^2KH_0+rac{g^2}{L}KV$ invariant mass

- K, Q, M^2 commute \rightarrow choose single K and Qand diagonalize M^2 .
- M^2 is infinite for $Q \neq 0 \rightarrow$ take only states with Q = 0.
- for single K the mass operator is a finite matrix

invariant mass

Parametrization

QED2 in lightfront formulation

$$M^2 = m^2 K H_0 + rac{g^2}{\pi} K V = \tilde{m}^2 \left((1 - \lambda^2) K H_0 + \lambda^2 K V
ight)$$
 $ilde{m}$ only scales $M^2 o \operatorname{set} \, ilde{m} = 1$

$$\lambda^2 = (1 + \pi (m/g)^2)^{-1}$$

$$\lambda^2 pprox rac{g^2}{\pi m^2}$$
 for small $rac{g}{m}$ - weak coupling limit $\lambda^2 pprox 1 - rac{\pi m^2}{g^2}$ for small $rac{m}{g}$ - small mass limit

Length scaling

$$P^+ = \frac{2\pi}{L}K$$

P⁺ total momentum

K cutoff

L size of the system $(x \in (-L, L)$ with periodic bc)

For constant P^+ length L scales with cutoff $(L \sim K)$.

States in Hilbert space with cutoff K

$$|\text{m};\bar{\text{m}}\rangle = |n_1,\ldots,n_N;\bar{n}_1,\ldots,\bar{n}_N\rangle = b_{n_1}^\dagger\ldots b_{n_N}^\dagger d_{\bar{n}_1}^\dagger\ldots d_{\bar{n}_N}^\dagger |\emptyset\rangle$$

$$\sum n_i + \sum \bar{n}_i = K$$

String picture

at small distances energy is proportional to the separation of particles $E = \sigma \Delta$ σ - string tension

at large distances it is favorable to create additional pair - string breaks

Idea:

- can study string tension in (dynamical) bound states in sector with two particles
- multiparticle states → screening → string breaking

Table of Contents

- $oxed{\mathbb{Q}}\operatorname{ED}_2$ in lightfront formulation
- String tension
- String breaking screening
- 4 Summary

Masses in two particle sector

30 lowest mass states for different values of λ and K=400.

Exclusive wavefunction in two particle sector (DFT)

Exclusive wavefunction in two particle sector (DFT)

String tension

$$\begin{split} |\phi\rangle &= \sum_{n,\overline{n}} \frac{\tilde{\phi}_2(n,\overline{n})}{|n|} |n;\overline{n}\rangle + \sum_{n,\overline{n}} \tilde{\phi}_4(n,\overline{n}) |n;\overline{n}\rangle + \dots \\ &\qquad \qquad n = (n_1,n_2) \\ \phi_2(\Delta) &= \sum_n e^{-i(\xi_1 n + \xi_2 \overline{n})} \tilde{\phi}_2(n,\overline{n}) \\ &= e^{-iK\xi_2} \sum_n e^{i\Delta n} \tilde{\phi}_2(n,\overline{n}) \end{split}$$

 $|\phi_2(\Delta)|^2$ is probability distribution of distance between fermion and antifermion parameters: $\lambda^2 = 0.5$, K = 400

Fermion is located at $\Delta=0$. Antifermion is at $\Delta=\pm\Delta_0$. Represent M^2 as a function of Δ_0 .

Mass dependence on pair separation

 $M^2(\Delta_0)$ converges to a straight line for growing K $M^2(\Delta_0)=m_0^2+\sigma K\Delta_0\Rightarrow \sigma\approx 1.5$

String tension as a function of g

Set m=1. String tension is proportional to g^2 .

Conclusions

Two particle sector:

- distance between fermion and antifermion is well defined
- M^2 is proportional to distance
- string tension: proportionality constant
- string tension is proportional to coupling constant

Conclusions

Two particle sector:

- distance between fermion and antifermion is well defined
- M^2 is proportional to distance
- string tension: proportionality constant
- string tension is proportional to coupling constant

How is this changed by multiparticle sectors? Can this string be broken?

Table of Contents

- \bigcirc QED $_2$ in lightfront formulation
- 2 String tension
- 3 String breaking screening
- 4 Summary

Inclusive functions

$$\begin{split} |\phi\rangle &= \sum_{n,\bar{n}} \tilde{\phi}_2(n,\bar{n}) \, |n;\bar{n}\rangle + \sum_{n,\bar{n}} \frac{\tilde{\phi}_4(n,\bar{n}) \, |n;\bar{n}\rangle + \dots}{m = (n_1,n_2)} \\ \phi_4(\Delta_1,\Delta_2,\Delta_3) &= e^{-iK\xi_4} \sum_{n_1,n_2,\bar{n}_1} e^{i(\Delta_1 n_1 + \Delta_2 n_2 + \Delta_3 \bar{n}_1)} \tilde{\phi}_4(n,\bar{n}) \end{split}$$

$$\begin{split} |\phi\rangle &= \sum_{n,\bar{n}} \tilde{\phi}_2(n,\bar{n}) \, |n;\bar{n}\rangle + \sum_{n,\bar{n}} \underbrace{\tilde{\phi}_4(n,\bar{n})}_{n,\bar{n}} |n;\bar{n}\rangle + \dots \\ &= (n_1,n_2) \\ &n_1 < n_2 \end{split}$$

$$\phi_4(\Delta_1,\Delta_2,\Delta_3) = e^{-iK\xi_4} \sum_{n_1,n_2,\bar{n}_1} e^{i(\Delta_1 n_1 + \Delta_2 n_2 + \Delta_3 \bar{n}_1)} \tilde{\phi}_4(n,\bar{n})$$

Function $|\phi_4(\Delta_1, \Delta_2, \Delta_3)|^2$ depends on 3 variables

 \rightarrow construct inclusive functions of one variable.

Inclusive functions

General formula: [Dorigoni, Veneziano, Wosiek '10]

$$D(\Delta) = \int d^{p-1} \vec{\Delta} \sum \delta(\Delta - \Delta_{ij}) |\phi_p(\vec{\Delta})|^2$$

Examples:

- $D_{ff}(\Delta)$ probability distribution of a distance Δ between two fermions
- $D_{f\bar{f}}(\Delta)$ probability distribution of a distance Δ between one fermion and any antifermion
- $D_{f\bar{f}}^{nn}(\Delta)$ probability distribution of a distance Δ between one fermion and **the nearest antifermion**

Inclusive functions

$$D_{ff}(\Delta) = \int d\Delta_1 d\Delta_2 d\Delta_3 \delta(\Delta - (\Delta_1 - \Delta_2)) |\phi_4(\Delta_1, \Delta_2, \Delta_3)|^2$$

$$\begin{split} D_{f\bar{f}}(\Delta) &= \int d\Delta_1 d\Delta_2 d\Delta_3 \Big[\delta(\Delta - (\Delta_1 - \Delta_3)) + \delta(\Delta - \Delta_1) \\ &+ \delta(\Delta - (\Delta_2 - \Delta_3)) + \delta(\Delta - \Delta_2) \Big] |\phi_4(\Delta_1, \Delta_2, \Delta_3)|^2 \end{split}$$

Inclusive functions $(K = 30, \lambda^2 = 0.5)$

String remains at small distances.

At larger distances Δ_0 additional pair is created \rightarrow screening \rightarrow breaking of a string.

String breaking ($K = 30, \lambda^2 = 0.3$)

String breaking $(K = 30, \lambda^2 = 0.3)$

String breaking ($K = 30, \lambda^2 = 0.3$)

- at distance large enough the string is broken
- ullet maximal length of the string shortens for growing λ

Table of Contents

- 1 QED₂ in lightfront formulation
- 2 String tension
- String breaking screening
- Summary

Summary

- inclusive functions give insight into structure of the mass states
- ullet at small distances M^2 is proportional to separation of two particles
- at some distance additional pair screens the interaction (state with 4 particles) ⇒ string is broken
- additional pair screens the interaction
- string breaks earlier for stronger coupling / lower bare mass

Literature

 T. Eller, H.C. Pauli, S.J. Brodsky, Discretized light cone quantization: The massless and the massive Schwinger model, Phys.Rev.D 35(1987) 1493-1507

 D. Dorigoni, G. Veneziano, J. Wosiek, Dimensionally reduced SYM₄ at large-N: an intriguing Coulomb approximation., JHEP 1106 (2011) 051

Inclusive function for the nearest neighbor

$$egin{aligned} D^{nn}_{far{f}}(\Delta) &= \int d\Delta_1 d\Delta_2 \left[\delta(\Delta - (\Delta_1 - \Delta_3)) \int_0^{2\pi-2\Delta} d\Delta_3
ight. \\ &+ \delta(\Delta - \Delta_1) \int_{2\Delta}^{2\pi} d\Delta_3 + \delta(\Delta - (\Delta_2 - \Delta_3)) \int_0^{2\pi-2\Delta} d\Delta_3
ight. \\ &+ \delta(\Delta - \Delta_2) \int_{2\Delta}^{2\pi} d\Delta_3 \left[|\phi_4(\Delta_1, \Delta_2, \Delta_3)|^2
ight. \end{aligned}$$